贝塞尔曲线学习

Tags

1.贝塞尔曲线

以下公式中: B(t)为t时间下 点的坐标; P0为起点,Pn为终点,Pi为控制点
一阶贝塞尔曲线(线段)
notion image
notion image
意义:由 P0 至 P1 的连续点, 描述的一条线段
二阶贝塞尔曲线(抛物线)
notion image
notion image
原理:由 P0 至 P1 的连续点 Q0,描述一条线段。
由 P1 至 P2 的连续点 Q1,描述一条线段。 由 Q0 至 Q1 的连续点 B(t),描述一条二次贝塞尔曲线。 经验:P1-P0为曲线在P0处的切线。
三阶贝塞尔曲线:
notion image
notion image
通用公式:
notion image
高阶贝塞尔曲线: 4阶曲线:
notion image
5阶曲线:
notion image

1.1.生成贝塞尔曲线-迭代法

下面我们用代码来生成贝塞尔曲线,来展示如何贝塞尔曲线的生成原理:
package com.che.chechengwang.support.view.bezier;

import android.animation.FloatEvaluator;
import android.animation.ValueAnimator;
import android.content.Context;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Path;
import android.graphics.PointF;
import android.util.AttributeSet;
import android.view.View;
import android.view.animation.LinearInterpolator;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Random;

/**
 * 生成贝塞尔曲线-迭代法
 * <p/>
 * 作者:余天然 on 16/6/14 下午2:10
 */
public class BezierGenerater1 extends View {

    private Paint paint;
    private int centerX, centerY;
    private List<PointF> points;
    private FloatEvaluator evaluator;
    private float fraction;
    private Map<Integer, Integer> colors;
    private List<PointF> destPoints;

    public BezierGenerater1(Context context, AttributeSet attrs) {
        super(context, attrs);
        init();
    }

    private void init() {
        paint = new Paint();
        paint.setAntiAlias(true);
        paint.setStyle(Paint.Style.STROKE);
        evaluator = new FloatEvaluator();
        startAnim();
    }

    //初始化数据点和控制点的位置
    @Override
    protected void onSizeChanged(int w, int h, int oldw, int oldh) {
        super.onSizeChanged(w, h, oldw, oldh);
        centerX = w / 2;
        centerY = h / 2;
        points = new ArrayList<>();
        points.add(new PointF(centerX - 150, centerY));
        points.add(new PointF(centerX - 50, centerY - 300));
        points.add(new PointF(centerX + 50, centerY + 300));
        points.add(new PointF(centerX + 150, centerY));
        colors = new HashMap<>();
        for (int i = 0; i < points.size(); i++) {
            colors.put(i, getRanColor());
        }
        destPoints = new ArrayList<>();
        destPoints.add(points.get(0));
    }

    @Override
    protected void onDraw(Canvas canvas) {
        super.onDraw(canvas)

1.2.生成贝塞尔曲线-De Casteljau算法

package com.che.chechengwang.support.view.bezier;

import android.animation.ValueAnimator;
import android.content.Context;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Path;
import android.graphics.PointF;
import android.util.AttributeSet;
import android.view.View;
import android.view.animation.LinearInterpolator;

import java.util.ArrayList;
import java.util.List;

/**
 * 生成贝塞尔曲线-De Casteljau算法
 * <p/>
 * 作者:余天然 on 16/6/14 下午2:10
 */
public class BezierGenerater2 extends View {

    private Paint paint;
    private int centerX, centerY;
    private List<PointF> points;
    private float fraction;
    private List<PointF> destPoints;

    public BezierGenerater2(Context context, AttributeSet attrs) {
        super(context, attrs);
        init();
    }

    private void init() {
        paint = new Paint();
        paint.setAntiAlias(true);
        paint.setStyle(Paint.Style.STROKE);
    }

    //初始化数据点和控制点的位置
    @Override
    protected void onSizeChanged(int w, int h, int oldw, int oldh) {
        super.onSizeChanged(w, h, oldw, oldh);
        centerX = w / 2;
        centerY = h / 2;
        points = new ArrayList<>();
        points.add(new PointF(centerX - 150, centerY));
        points.add(new PointF(centerX - 50, centerY - 300));
        points.add(new PointF(centerX + 50, centerY + 300));
        points.add(new PointF(centerX + 150, centerY));
        destPoints = new ArrayList<>();
        destPoints.add(points.get(0));
        startAnim();
    }

    @Override
    protected void onDraw(Canvas canvas) {
        super.onDraw(canvas);
        //静态的
        drawPoint(canvas, points, Color.BLACK);
        drawLine(canvas, points, Color.GRAY);
        //动态的
        drawPath(canvas, destPoints);
    }

    // 绘制数据点
    private void drawPoint(Canvas canvas, List<PointF> data, int color) {
        paint.setColor(color);
        paint.setStrokeWidth(20);
        for (int i = 0; i < data.size();

1.3.二阶贝塞尔曲线

package com.che.chechengwang.support.view.bezier;

import android.content.Context;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Path;
import android.graphics.PointF;
import android.util.AttributeSet;
import android.view.MotionEvent;
import android.view.View;

/**
 * 二阶贝塞尔曲线
 * <p/>
 * 两个数据点和一个控制点
 * 公式:B(t) = (1 - t)^2 * P0 + 2t * (1 - t) * P1 + t^2 * P2, t ∈ [0,1]
 * 作者:余天然 on 16/6/14 上午10:27
 */
public class Bezier2 extends View {
    private Paint paint;
    private int centerX, centerY;
    private PointF start, end, control;

    public Bezier2(Context context, AttributeSet attrs) {
        super(context, attrs);
        init();
    }

    private void init() {
        paint = new Paint();
        paint.setAntiAlias(true);
        paint.setStyle(Paint.Style.STROKE);

        start = new PointF(0, 0);
        end = new PointF(0, 0);
        control = new PointF(0, 0);
    }

    //初始化数据点和控制点的位置
    @Override
    protected void onSizeChanged(int w, int h, int oldw, int oldh) {
        super.onSizeChanged(w, h, oldw, oldh);
        centerX = w / 2;
        centerY = h / 2;
        start.x = centerX - 200;
        start.y = centerY;
        end.x = centerX + 200;
        end.y = centerY;
        control.x = centerX;
        control.y = centerY - 100;
    }

    //根据触摸位置更新控制点,并提示重绘
    @Override
    public boolean onTouchEvent(MotionEvent event) {
        control.x = event.getX();
        control.y = event.getY();
        invalidate();
        return true;
    }

    @Override
    protected void onDraw(Canvas canvas) {
        super.onDraw(canvas);
        drawPoint(canvas);
        drawGuideLine(canvas);
        drawBezierCurve(canvas);
    }

    // 绘制数据点和控制点
    private void drawPoint(Canvas canvas) {
        paint.setColor(Color.GRAY);
        paint.setStrokeWidth(20);
        canvas.drawPoint(start.x, start.y, paint);
        canvas.drawPoint(end.x, end.y, paint);
        canvas.drawPoint(

1.4.三阶贝塞尔曲线

package com.che.chechengwang.support.view.bezier;

import android.content.Context;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Path;
import android.graphics.PointF;
import android.util.AttributeSet;
import android.view.MotionEvent;
import android.view.View;

import java.util.ArrayList;
import java.util.List;

/**
 * 三阶贝塞尔曲线
 * <p/>
 * 2个数据点和2个控制点
 * 公式:B(t) = P0 * (1-t)^3 + 3 * P1 * t * (1-t)^2 + 3 * P2 * t^2 * (1-t) + P3 * t^3 代
 * 作者:余天然 on 16/6/14 上午10:27
 */
public class Bezier3 extends View {

    private Paint paint;
    private int centerX, centerY;
    private List<PointF> points;

    public Bezier3(Context context, AttributeSet attrs) {
        super(context, attrs);
        init();
    }

    private void init() {
        paint = new Paint();
        paint.setAntiAlias(true);
        paint.setStyle(Paint.Style.STROKE);
    }

    //初始化数据点和控制点的位置
    @Override
    protected void onSizeChanged(int w, int h, int oldw, int oldh) {
        super.onSizeChanged(w, h, oldw, oldh);
        centerX = w / 2;
        centerY = h / 2;
        points = new ArrayList<>();
        points.add(new PointF(centerX - 150, centerY));
        points.add(new PointF(centerX - 50, centerY - 300));
        points.add(new PointF(centerX + 50, centerY + 300));
        points.add(new PointF(centerX + 150, centerY));
    }

    //根据触摸位置更新控制点,并提示重绘
    @Override
    public boolean onTouchEvent(MotionEvent event) {
        PointF control = new PointF(0, 0);
        control.x = event.getX();
        control.y = event.getY();

        double distance1 = getDistance(control, points.get(1));
        double distance2 = getDistance(control, points.get(2));

        if (distance1 < distance2) {
            points.set(1, control);
        } else {
            points.set(2, control);
        }
        invalidate();
        return true;
    }


    @Override
    protected void onDraw(Canvas canvas) {
        super.onDraw(can

1.5.用贝塞尔曲线拟合圆形

分成四段3阶贝塞尔曲线 每一段拟合90度扇形
notion image
notion image
计算过程: 由公式:B(t) = P0 * (1-t)^3 + 3 * P1 * t * (1-t)^2 + 3 * P2 * t^2 * (1-t) + P3 * t^3 显然,当t=0.5的时候,应该正好在45度的位置上, 于是: sin(pi/4) = 0.125(3x1 - 2) + 0.25(3 - 6x1 ) + 0.5(3x1 ) 解出x1=0.55228475 也就是: 根据对称性,可得y1=x1;
notion image

2.自定义视图

贝塞尔曲线就是PS里面的魔棒工具,UI上的很多曲线,其实都是用贝塞尔曲线画的,既然如此,我们只需要知道UI是怎么画的,让她标注好数据点的位置,那我们就可以原样画出UI效果了。
贝塞尔曲线的用处,就是动态绘制平滑曲线!并且可以实时控制曲线状态,并可以通过改变控制点的状态实时让曲线进行平滑的状态变化。

2.1.气泡拖拽效果效果图:

notion image
notion image
上面的图是盗来的,因为我还不会在手机上录制gif,下面的我的demo的截图:
notion image
这里: p1是初始圆的圆心,p2是拖动圆的圆心 X是p1p2线段的中点 AB:与p1p2线段垂直,长度为初始圆的直径 CD:与p1p2线段垂直,长度为拖动圆的直径
绘制流程: 1.绘制p1和p2的圆形 2.根据A,X,D绘制一条2阶贝塞尔曲线 3.根据B,X,C绘制另一条2阶贝塞尔曲线 4.设置path的模式为填充模式
package com.che.chechengwang.support.view.bezier;

import android.animation.FloatEvaluator;
import android.animation.ValueAnimator;
import android.content.Context;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Path;
import android.graphics.PointF;
import android.util.AttributeSet;
import android.view.MotionEvent;
import android.view.View;
import android.view.animation.OvershootInterpolator;

import com.che.chechengwang.support.view.bezier.PointUtil;

/**
 * 贝塞尔曲线-气泡拖拽
 * <p/>
 * 二条2阶贝塞尔曲线
 * 作者:余天然 on 16/6/14 上午10:27
 */
public class BezierDraggableFlag extends View {
    private Paint paint;
    private int raduis = 40;//气泡的半径
    private double distance;//记录拉动的距离
    private double raduisTmp;//临时的半径
    private int maxDistance = 800;//拉断的距离
    private PointF p1, p2;//圆心
    private PointF pA, pB, pC, pD, pX;//控制点

    private double distanceBackup;
    private PointF p2Backup;

    public BezierDraggableFlag(Context context, AttributeSet attrs) {
        super(context, attrs);
        init();
    }

    //初始化圆心的位置
    private void init() {
        paint = new Paint();
        paint.setAntiAlias(true);

        p1 = new PointF(600, 400);
        p2 = new PointF(600, 400);
    }

    @Override
    public boolean onTouchEvent(MotionEvent event) {
        switch (event.getAction()) {
            case MotionEvent.ACTION_DOWN:
                break;
            case MotionEvent.ACTION_MOVE:
                p2.x = event.getX();
                p2.y = event.getY();
                distance = PointUtil.getDistance(p1, p2);
                invalidate();
                break;
            case MotionEvent.ACTION_UP:
                if (distance < maxDistance) {
                    p2Backup = new PointF(p2.x, p2.y);
                    distanceBackup = distance;
                    startAnim();
                }
                break;
        }
        return true;
    }

    @Override
    protected void
这里用到了一个工具类:
package com.che.chechengwang.support.view.bezier;

import android.graphics.PointF;

/**
 * 点计算工具类
 * <p/>
 * 作者:余天然 on 16/6/15 下午2:33
 */
public class PointUtil {

    //获取旋转后的点
    public static PointF getRotatePoint(PointF p1, PointF p2, double raduis, double radians) {
        double oldRadians = getPointDegree(p1, p2);
        double newRadians = oldRadians + radians;
        float x = (float) (raduis * Math.cos(newRadians));
        float y = (float) (raduis * Math.sin(newRadians));
        return new PointF(p1.x + x, p1.y + y);
    }

    //获取中间的点
    public static PointF getCenterPoint(PointF p1, PointF p2) {
        float x = (p1.x + p2.x) / 2;
        float y = (p1.y + p2.y) / 2;
        return new PointF(x, y);
    }

    //获取两点的角度-返回的是弧度制
    public static double getPointDegree(PointF p1, PointF p2) {
        double scale = (p2.y - p1.y) / (p2.x - p1.x);
        return Math.atan(scale);
    }

    //获取两点的距离
    public static double getDistance(PointF start, PointF end) {
        return Math.sqrt((end.y - start.y) * (end.y - start.y) + (end.x - start.x) * (end.x - start.x));
    }
}

2.2.指示器效果目标效果:

notion image
这个以后再来玩,其实有了上面的气泡拖拽效果,实现这个效果很简单的,有兴趣的朋友完全可以根据我上面的效果来实现它。
随便再给大家分享一个学习android自定义View相关知识的好网站:有心课堂-三杆火枪干掉自定义View,传递给你的不仅仅是技术!

参考目录

  1. 贝塞尔曲线 总结
  1. BezierDemo源码解析-实现qq消息气泡拖拽消失的效果
  1. 贝塞尔曲线扫盲
  1. Path之贝塞尔曲线
  1. 使用贝塞尔曲线拟合圆
  1. 基于贝塞尔曲线的Android动画差值器

© fishyer 2022 - 2023